Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury

نویسندگان

  • Milan Radojicic
  • Gabriel Nistor
  • Hans S Keirstead
چکیده

BACKGROUND Chronic spinal cord injury (SCI) can lead to an insidious decline in motor and sensory function in individuals even years after the initial injury and is accompanied by a slow and progressive cytoarchitectural destruction. At present, no pathological mechanisms satisfactorily explain the ongoing degeneration. METHODS Adult female Sprague-Dawley rats were anesthetized laminectomized at T10 and received spinal cord contusion injuries with a force of 250 kilodynes using an Infinite Horizon Impactor. Animals were randomly distributed into 5 groups and killed 1 (n = 4), 28 (n = 4), 120 (n = 4), 450 (n = 5), or 540 (n = 5) days after injury. Morphometric and immunohistochemical studies were then performed on 1 mm block sections, 6 mm cranial and 6 mm caudal to the lesion epicenter. The SPSS 11.5 t test was used to determine differences between quantitative measures. RESULTS Here, we document the first report of an ascending central canal dilation and progressive ependymal disruption cranial to the epicenter of injury in a contusion model of chronic SCI, which was characterized by extensive dural fibrosis and intraparenchymal cystic cavitation. Expansion of the central canal lumen beyond a critical diameter corresponded with ependymal cell ciliary loss, an empirically predictable thinning of the ependymal region, and a decrease in cell proliferation in the ependymal region. Large, aneurysmal dilations of the central canal were accompanied by disruptions in the ependymal layer, periependymal edema and gliosis, and destruction of the adjacent neuropil. CONCLUSION Cells of the ependymal region play an important role in CSF homeostasis, cellular signaling and wound repair in the spinal cord. The possible effects of this ascending pathology on ependymal function are discussed. Our studies suggest central canal dilation and ependymal region disruption as steps in the pathogenesis of chronic SCI, identify central canal dilation as a marker of chronic SCI and provide novel targets for therapeutic intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Canal Ependymal Cells Proliferate Extensively in Response to Traumatic Spinal Cord Injury but Not Demyelinating Lesions

The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI) and multiple sclerosis (MS). Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a ...

متن کامل

Functional recovery assessment of spinal cord contusion model in male rats without therapeutic interventions

Introduction: Spinal cord injury (SCI) is one of the most serious clinical diseases, which not only affects the patient's physical and mental status, but its effects will be spread to family and community. After severe spinal cord injury, astrocytes of the central nervous system (CNS) become reactive astrocytes, and play the main role of glial scar formation. The scar is a major obstacle to r...

متن کامل

Compound Action Potential of Isolated Spinal Cord: A Biophysical Analysis to Address Activity of Individual Fibers Following Contusion Injury

Compound action potential (CAP) of spinal cord represents valuable properties of neural fibers including excitability, rate of myelination and membrane integrity. These properties are measured using amplitude, latency and area under curve of CAPs recorded from spinal cord. Here, the isolated spinal cord was set in a double sucrose gap (DSG) chamber and its response to intracellular stimulation ...

متن کامل

The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features.

Several laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, ...

متن کامل

Decrease in Cavity Size and Oligodendrocyte Cell Death Using Neurosphere-Derived Oligodendrocyte-Like Cells in Spinal Cord Contusion Model

Background: Oligodendrocyte cell death is among the important features of spinal cord injury, which appears within 15 min and occurs intensely for 4 h after injury, in the rat spinal contusion model. Accordingly, the number of oligodendrocytes progressively reduced within 24 h after injury. Administration of oligodendrocyte-like cells (OLCs) into the lesion area is one of the approaches to coun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Neurology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2007